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Introduction

Modeling with Covariates
Y : response
X : Covariates
Regression
Classification
Supervised Learning
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Definition

What is density regression or conditional density estimation?
Regress the whole density function with covariates

p(y | X = x)

Regression is a special case:

Y = Xβ + ε

ε ∼ N(0, σ2)

p(y | X = x) ≡ N(xβ, σ2)

Many datasets don’t fit these strong parametric assumptions.
Some methods seek to be more flexible by:

I Modeling the mean flexibly (e.g. splines)
I Modeling ε(x)
I Combining the two above
I Other approaches
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Simple Model with one covariate: Sex

Y = β0 + ε

ε ∼ Dirichlet Process
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Motivation

When is conditional density estimation useful?

Windmill Data

I Power output from windmills

I Wind energy is one of the fastest growing renewable energy
sources

I In wind industry the power curve measures the relationship
between power output of a turbine and wind speed

Bani K. Mallick May 10, 2018 6 / 53



Motivation

When is conditional density estimation useful?

Windmill Data

I Power output from windmills

I Wind energy is one of the fastest growing renewable energy
sources

I In wind industry the power curve measures the relationship
between power output of a turbine and wind speed

Bani K. Mallick May 10, 2018 6 / 53



Wind Curve
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Wind Curve

I A turbine starts to produce power after the wind reaches the
cut-in speed

I A nonlinear relation between power output and wind speed then
ensue, until wind reaches the rated speed

I When the wind speed is beyond rated speed, the turbine output
power will be restricted at the rated power output using control
mechanism

I The turbine will be halted when the wind reaches cut-off speed
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Other variables

I Though power curve follow the general trend, there appears to
be a considerable amount of information that cannot be
accounted.

I Wide array of sensors measure other variables too

I wind speed

I wind direction

I air density

I wind sheer

I turbulence intensity
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Current Practice

I Nonparametric approach known as the binning method (IEC
2005)

I Discretize the domain of wind speed into finite number of bins
and take sample averages of the power output within each bin

I Usual bin width .5m/s

I All other variables are ignored

I Our technical objective is to estimate the conditional density
p(y | x)
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Existing (Bayesian) Conditional Density Estimation

I Use mixture models (e.g. Dirichlet process) for the conditional
distribution of p(y | x) and allow the mixing weights as well as
the parameters to depend on the covariates (Chung and Dunson,
2009; Dunson and Park, 2008; Dunson et al., 2007; Griffin and
Steel, 2006).

I Kernels, splines, mixtures of experts (Fan et al., 1996; Fu et al.,
2011; Kooperberg and Stone, 1991; Stone et al., 1997; Jacobs
et al., 1991).

I Subspace projection (Tokdar et al., 2010)

I Latent variable methods (Kundu and Dunson, 2011;
Bhattacharya and Dunson, 2010)

Bani K. Mallick May 10, 2018 11 / 53



Existing (Bayesian) Conditional Density Estimation

I Use mixture models (e.g. Dirichlet process) for the conditional
distribution of p(y | x) and allow the mixing weights as well as
the parameters to depend on the covariates (Chung and Dunson,
2009; Dunson and Park, 2008; Dunson et al., 2007; Griffin and
Steel, 2006).

I Kernels, splines, mixtures of experts (Fan et al., 1996; Fu et al.,
2011; Kooperberg and Stone, 1991; Stone et al., 1997; Jacobs
et al., 1991).

I Subspace projection (Tokdar et al., 2010)

I Latent variable methods (Kundu and Dunson, 2011;
Bhattacharya and Dunson, 2010)

Bani K. Mallick May 10, 2018 11 / 53



Existing (Bayesian) Conditional Density Estimation

I Use mixture models (e.g. Dirichlet process) for the conditional
distribution of p(y | x) and allow the mixing weights as well as
the parameters to depend on the covariates (Chung and Dunson,
2009; Dunson and Park, 2008; Dunson et al., 2007; Griffin and
Steel, 2006).

I Kernels, splines, mixtures of experts (Fan et al., 1996; Fu et al.,
2011; Kooperberg and Stone, 1991; Stone et al., 1997; Jacobs
et al., 1991).

I Subspace projection (Tokdar et al., 2010)

I Latent variable methods (Kundu and Dunson, 2011;
Bhattacharya and Dunson, 2010)

Bani K. Mallick May 10, 2018 11 / 53



Windmill Data

All the referred methods are suitable when the density of y changes
smoothly over the covariate space.
It is known that there are sharp changes in the density of y over the
covariates.

I Pitch control at high wind speeds

I To protect generator under high wind

I Wind speed is very high, the turbine blades turned parallel to the
wind to reduce the energy absorption capability

I Hence, the power output is concentrated near maximum power
level
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Windmill Data

I Terrain: Not flat and smooth the sharp change in power output

I Wake effects: Downwind from another turbine creates sharp
change in power output
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Partition Model

I A partition model is made up by splitting the covariate space X
in M disjoint regions, say R1 · · ·RM

I The response Y in each region is assumed to be exchangeable,
generated from a common density

I The distribution of Y is independent among the partition

I Motivation: points nearby in covariate space come from the
same local distribution

I Naturally models sharp changes in covariate space

I Obtain the partition adaptively, hence automatically finds
important change points
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Partition model

Partition Model

I Partitions the data into M pieces

I Fits a separate model for each piece

p(y | Partition) =
M∏
i=1

p(yi)

I Can assume i.i.d. structure of the data (covariates only influence
partitioning), or not.

Bani K. Mallick May 10, 2018 15 / 53



Partition model

Partition Model

I Partitions the data into M pieces

I Fits a separate model for each piece

p(y | Partition) =
M∏
i=1

p(yi)

I Can assume i.i.d. structure of the data (covariates only influence
partitioning), or not.

Bani K. Mallick May 10, 2018 15 / 53



Partition model

Partition Model

I Partitions the data into M pieces

I Fits a separate model for each piece

p(y | Partition) =
M∏
i=1

p(yi)

I Can assume i.i.d. structure of the data (covariates only influence
partitioning), or not.

Bani K. Mallick May 10, 2018 15 / 53



Voronoi Partition

How to define regions so that points close together have the same
distribution?

Let y1, . . . , yn ∈ Y and x1, . . . , xn ∈ X represent the observed
response and covariate vectors.

A tessellation with M regions is determined by choosing M centers,
c1, . . . , cM and a weight vector, w,

∑
wk = 1.

A region of the tessellation is defined as all the points in X that are
closest to ci , i.e.

Ri = {x ∈ X : ||x− ci || < ||x− cj || ∀ i 6= j}

where ||x|| = ||(x1, . . . , xp)|| =
∑p

i=1 wix
2
i .
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Voronoi Partition Prior

p(c,M ,w) = p(c | M)p(M)p(w)

p(M) = DU(M | 1, . . . ,Mmax)

p(c | M) = DU

(
c | 1, . . . ,

(
n

M

))
p(w) = Di(w | 1, . . . , 1)

DU: Discrete Uniform
DI: Dirichlet Distribution
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Distribution within a Partition

I Regression: Gaussian Model with conjugate prior (Denison eta l.)

I Classification: Binary Model with conjugate prior (Denison et al.)

I Density regression: Need a flexible model for Density
Functions
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Logistic Gaussian Process

Logistic Gaussian process

p(y) =
exp(f (y))∫
V exp(f (s))ds

I Clearly p() defines a stochastic process whose realizations satisfy

p ≥ 0 and
∫ 1

0
p() = 1: properties which define a density function

I We model unrestricted f (·) as a Gaussian process

I How can we bring covariates x in this modeling?
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Partitioned Logistic Gaussian Process

Partition the covariates x in separate regions
We assume that the ith density in region Ri , i = 1, . . . ,M can be
modeled using a logistic Gaussian process

pi(y) =
exp(fi(y))∫
Vi

exp(fi(s))ds

I We model the density of y over a compact set, Vi ∈ R
I fi(·) is a Gaussian process
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GP Prior on fi(·)

fi(·) = µi(·) + gi(·)
gi(·) ∼ GP(0, κ(·, ·))

µi(·) = h(·)Tβi

h(y) = (y , y 2)T

βi ∼ N(b,B)

βi can be integrated out to yield the marginal prior for fi(·)

fi(·) ∼ GP
(
h(·)Tb, κ(·, ·) + h(·)TBh(·)

)
We choose b = 0 and B = Iλ2 for the examples later.
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Discretization and Likelihood

The integral in the denominator of Logistic Gaussian Process involves
the entire sample path, which is an infinite dimensional object which
makes it infeasible to carry out any likelihood-based computation

For perspective of efficient computing, we make finite dimensional
approximation through discretization

The spacing between the grid points decreases, the Kullback-Leibler
divergence from an infinite-dimensional model to the
finite-dimensional approximation converges to zero
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Discretization and Likelihood

We choose m points on a regular grid (z1, . . . , zm) ∈ Y on which we
evaluate fi = (fi(z1), . . . , fi(zm))T which yields a discretized version
of the density.

p(yi | fi) = exp

{
y?i

T fi − ni log

(
m∑
j=1

exp(fij)

)}
where yi is the collection of ni observed responses in region Ri , y?i is
a column vector of length m with the jth element as the number of
elements of yi that fall into the subregion centered at zj .
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Posterior Tessellation

We are interested in searching the posterior of the tessellation
structure, T = {c,M ,w},

p(T | y) ∝ p(T )p(y | T )

= p(T )
M∏
i=1

∫
p(yi | fi ,T )p(fi)dfi

I Often likelihoods and priors are chosen such that the integral has
an analytical form.

I In our case, there is no analytical form, so we employ a Laplace
approximation to estimate each integral.
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Laplace Approximation

The Laplace approximation performs a Taylor expansion around
log[p(yi | fi)p(fi)] and then uses a multivariate-normal density
centered at f̂i = arg maxfi p(yi | fi)p(fi).

I f̂i is obtained efficiently using Newton’s method

I Laplace approximation has a closed form

Bani K. Mallick May 10, 2018 26 / 53



Laplace Approximation

The Laplace approximation performs a Taylor expansion around
log[p(yi | fi)p(fi)] and then uses a multivariate-normal density
centered at f̂i = arg maxfi p(yi | fi)p(fi).

I f̂i is obtained efficiently using Newton’s method

I Laplace approximation has a closed form

Bani K. Mallick May 10, 2018 26 / 53



Laplace Approximation

The Laplace approximation performs a Taylor expansion around
log[p(yi | fi)p(fi)] and then uses a multivariate-normal density
centered at f̂i = arg maxfi p(yi | fi)p(fi).

I f̂i is obtained efficiently using Newton’s method

I Laplace approximation has a closed form

Bani K. Mallick May 10, 2018 26 / 53



Selection of Hyperparameters

In each partition element, we have to select the covariance function
parameters for the prior on fi .
We select squared exponential covariance function.

κ(z , z ′) = σ2
i exp

(
− 1

2l2i
(z − z ′)2

)
Use empirical Bayes to find σ2

i , li .
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Consistency Results

If the proposed model is true, then as n goes to infinity, the posterior
density concentrates near a small total variation neighborhood around
the true density.

First, we showed the consistency under the true model where the
target density has partition form.
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Consistency Results

I First show that the partition formed by a Voronoi tessellation
can adequately approximate the true partition

I Then establish that we have sufficient prior probability for the
approximating partitioning and around any small neighborhood
of the true Gaussian process path in supremum norm

I Finally, if we have sufficient prior mass around the true density,
the likelihood pulls the posterior density towards the data
generating density under the true model
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Consistency Results

Theorem

Let Uε′ = {p :
∫
|p(y |x)− p∗(y |x)|dH(x)dy < ε′}, ε′ > 0 and

p∗(y |x) denote the true conditional density. Then, under some
condition Π(Uε′ |·)→ 1 with probability one, as n the number of
observations goes to infinity.

We show similar consistency results under model misspecification
where the true conditional density is Lipschitz continuous.
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Simulation

500 observations were simulated from the following model:

Y | X1,X2 ∼


Gamma(10, 2) if X1 > X2, X2 < .75

.5N(1, 1) + .5N(5, 1) if X1 < X2, X1 < .75

N(1,
√
.5) if X1 > .75, X2 > .75

Comparison with:

I Dependent Bernstein polynomials (Barrientos et al., 2017)

I Linear dependent tail-free processes (Jara and Hanson, 2011)

I Dirichlet process mixtures of normals (Müller et al., 1996)

I Voronoi partition assuming normality (Denison et al., 2002)
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Comparison with Existing methods

I Linear Dependent Tail Free processes [Jara and Handson, 2011]

I Bernstein Polynomials [Barrientos et al. 2017]

I Dirichlet Process Mixtures of Normals [Muller et al, 1996]

I They assume that the density of y changes smoothly as a
function of the covariates.

I We also compare with Gaussian Partition Model [Denison et
al.,2002] which allows discontinuity but restricted to Gaussian
distribution.

Bani K. Mallick May 10, 2018 35 / 53



Comparison with Existing methods

I We evaluate posterior density at four different covariate
locations including one on the boundary

I None of them can compete with our partition model

I Dirichlet Process mixture of Normals performed the best among
others

I That methods failed at the boundary

I Adequate in the middle though with wide credible intervals at
the away-from-boundary points
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Dependent Bernstein Polynomials
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Linear Dependent Tail-free Processes
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Dirichlet Process Mixture
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Normal Partition Model
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Windmill Data

I 10,000 observations

I Variables
I wind speed
I wind direction
I air density
I wind sheer
I turbulence intensity
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I Wind speed describes the majority of the changes power output
I The dramatic change in power output at about 120 degrees is

believed to be caused by a wake effect from another turbine
I Successfully captures the wind speed at which the maximum

power output is achieved at 12m/s
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Discussion

I Strengths
I Provides interpretation
I Flexible density estimation
I Easy to tune MCMC

I Limitations
I Computation
I Interpretation & MCMC become more difficult as dimension

increases

I Future Work / Work in Progress
I Implement using a tree partition (simpler interpretation, better

mixing)
I Allow covariates to influence density within each partition

element
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Survival Analysis

A similar partition model can be developed for survival analysis.

I Hazard function is assumed to be piecewise constant

I Log-Hazard function if modeled by a Gaussian process

I Empirical Bayes is used to choose hyperparameters

I A tree partitioning is used

I Laplace approximations are used to approximate p(yi)

I Reversible jump MCMC and parallel tempering
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Lung Cancer Data

I Dependent variable is time until death (or censoring)

I Covariates are various protein expression levels

I X1 : CKIT ,X2 : GSK3ALPHABETA,X3 : IGFBP2,X4 :
NOTCH1,X5 : PI3KP110ALPHA,X6 : RAB25,X7 : TFRC ,X8 :
MEK1,X9 : pS217S221,X10 : NDRG1pT346

I 357 patients

I Large number censoring
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I Several different survival curves of various shapes

I Including groups with relatively short survival times and groups
tend to survive longer

I For example tree suggests: subjects with Low expression levels of
X1 : CKIT and X6 : RAB25 have relatively short survival time

I Higher level of X6 : RAB25 and X7 : TFRC generally lead to
longer survival time
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HAPPY BIRTHDAY LYNN AND 
MANY MORE TO COME!!!!
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