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High-dimensional problems

Consider

y = Xβ + ε,

where y = (y1, . . . , yn)T is the response vector, X is the n × p predictor
matrix, β = (β1, . . . , βp)T is the unknown coefficient vector, and
ε ∼ N(0n, σ

2In) with known σ2.

In many practical situations, we encounter that the number of coefficients, p,
is very large, i.e., p ≈ n, p > n, or p � n.

For instance, the genomics study investigates numerous genes that are
possibly related to a certain phenotype.
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Sparsity in high-dimensional problems

In high-dimensional regression models, the sparsity assumption for the
coefficient vector is necessary, otherwise β cannot be identifiable.

Let p∗ be the number of non-zero elements in β.

The sparsity assumption implies that p∗ � n.

In fact, this assumption is practical.

. A genome-wide association study looks at millions of single nucleotide
polymorphisms (SNPs) to identify a few relevant genes to a certain
phenotype.
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Ordinary least squares (OLS) estimation

In the classical regression analysis, ordinary least squares (OLS) is the most
popular method to estimate β;

β̂OLS = arg min
β

[
‖ y − Xβ‖2

]
.

In sparse high-dimensional problems, however, OLS estimator behaves poorly;

. Extremely large variance when p is large;

. No unique solution in the case of p > n or in presence of multicollinearity.
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Penalized Least Squares (PLS) estimation

In sparse high-dimensional estimation, penalized least squares (PLS) has
played a key role .

PLS estimator is defined as

β̂PLS = arg min
β

[
‖ y − Xβ‖2 + Pλ(β)

]
,

where Pλ(·) is a deterministic penalty function with a tuning parameter
λ (≥ 0) controlling the degree of penalization.
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PLS estimation with `0-norm penalty

Akaike (1974) and Schwarz (1978) introduced the `0-norm penalization as
follows:

β̂`0 = arg min
β

[
‖ y − Xβ‖2 + λ

p∑
j=1

I{βj 6= 0}
]
,

where I{·} denotes an indicator function.

Since the `0-norm penalty directly restricts the number of non-zero
coefficients, it successfully induces the sparsity for β̂`0 .

However, due to non-convexity and discontinuity of the `0-norm penalty,
finding the minimum is challenging especially when p is large.
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PLS estimation with `1-norm penalty

As an alternative, the `1-norm penalization, called the lasso (Tibshirani,
1996), was proposed:

β̂Lasso = arg min
β

[
‖ y − Xβ‖2 + λ

p∑
j=1
|βj |

]
.

. Since the lasso leads a continuous and convex optimization, it addresses
the computational drawback of the `0-norm.

. However, the lasso often leads to undesirable bias in the resulting
estimators, because it imposes the same degree of penalization for both zero
and non-zero coefficients (Zou, 2006).
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Adaptive Lasso

Zou (2006) introduced the adaptive lasso,

β̂Alasso = arg min
β

[
‖ y − Xβ‖2 +

p∑
j=1

λj |βj |

]
,

where λj = λ/|β̂j |γ , γ > 0, and β̂j is a
√

n–consistent estimator for βj .

. The adaptive lasso remedies the bias problem in the lasso.

. However, in the high-dimensional setup, it is challenging to find good λj .
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Approximation of `0-norm penalty

Recently, Goh et al. (2017) and Goh and Dey (2018) introduced an
approximation of the `0-norm penalty,

˜̀0,τ (β) = λ

p∑
j=1

β2
j

τ 2 + β2
j
,

where τ is a deterministic constant (e.g., τ = 10−5).

Note that as τ goes to zero, the new penalty approaches the `0 penalty:

lim
τ→0

`0,τ (β) = λ

p∑
j=1

I{βj 6= 0}.

Dipak K. Dey ( Department of Statistics University of Connecticut, Storrs, USA Joint work with Gyuhyeong Goh, Kansas State University. )Bayesian modeling of sparse high-dimensional data using divergence measures 9 / 41



Approximation of `0-norm penalty
The figure illustrates that as τ → 0, x2

τ 2+x2 → I{x 6= 0}.
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Figure: graphs of f (x) = x2/(τ 2 + x2) for τ = 10−2, 10−3, 10−4, 10−5
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Connection to the adaptive lasso

The new penalty can be viewed as the adaptive lasso in the sense that

λ

p∑
j=1

β2
j

τ 2 + β2
j

=
p∑

j=1

λ|βj |
τ 2 + β2

j
|βj | =

p∑
j=1

λ∗j |βj |,

where λ∗j = λ|βj |
τ 2+β2

j
, but λ∗j is automatically determined by βj .
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Bayesian perspective
The PLS estimator can be viewed as the maximum a posteriori (MAP)
estimator or posterior mode (Tibshirani, 1996; Park and Casella, 2008; Kyung
et al., 2010).

Define

π(β | y , λ) ∝ f (y | β)π(β | λ)

∝ exp
(
−1

2 ||y − Xβ||2
)

exp
{
−1

2Pλ(β)
}
,

where
– f (y | β) : the likelihood function;
– π(β | λ) : the prior for β given the hyperparameter λ.

Then, it is easy to check that

arg max
β

π(β | y , λ) = arg min
β

[
‖ y − Xβ‖2 + Pλ(β)

]
.
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Merit of Bayesian approach

Let β̂PLS be the PLS estimator, i.e.,

β̂PLS = arg min
β

[
‖ y − Xβ‖2 + Pλ(β)

]
.

In general, it is hard to estimate var(β̂PLS), unless the sample size n is very
large.

Let β̂MAP be the MAP estimator, i.e., β̂MAP = arg maxβ π(β | y , λ).

Under a Bayesian framework, the uncertainty associated with β̂MAP can be
easily quantified by the posterior distribution π(β | y , λ).
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Duality property

The relationship between the loss function and the likelihood, called duality
property, was originally discussed by Bernardo and Smith (1994).

The duality property states that the negative log-likelihood function can be
viewed as a loss function.

For example, the standard normal likelihood can be viewed as

f (y |β) ∝ exp
[
−1

2L2 (y ,h(Xβ))
]
,

where L2(x1, x2) = ‖x1 − x2‖2 is the squared Euclidean loss and h(x) = x is
the identity link function.
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Development of likelihood function via duality property

Now, we consider the case in which the data-generating distribution satisfies
the duality property.

To provide a general framework, we suppose that the negative log-likelihood
function belongs to a general class of divergence measures, called Bregman
divergence.

That is, the likelihood is expressed as

f (y |β) ∝ exp [−BDψ (y ,h(Xβ))] ,

where BDψ(·, ·) denotes the Bregman divergence.
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Bregman divergence (Bregman, 1967)

Definition
Let ψ : Ω→ R be a strictly convex function on a convex set Ω ⊆ Rm, assumed to
be nonempty and differentiable. Then for x, y ∈ Rm the Bregman divergence with
respect to ψ is defined as

BDψ (x, y) = ψ(x)− ψ(y)− (x − y)T∇ψ(y),

where ∇ψ represents the gradient vector of ψ.

The Bregman divergence can be interpreted as the difference between the
value of the convex function at x and its first order Taylor’s expansion at y .
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Graphical Illustration
The Bregman divergence measures the ordinate distance between the value of
the convex function at x and its tangent at y .

●

●

●

+ +

ψ(x)

ψ(y)

BDψ(x, y)

convex function ψ
tangent line of ψ at y

xy

Figure: Bregman divergence with ψ(x) = ecx − cx − 1, c = 0.5.
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Examples of Bregman divergences

The Bregman divergence includes a large class of well-known loss functions.

Table: Examples of the Bregman divergence generated by some convex functions, ψ’s.

ψ(x) Bregman divergence
||x||2 Squared error loss

xTW x Mahalanobis distance∑n
i=1 xi log xi Kullback-Leibler divergence∑n
i=1− log xi Itakura-Saito distance∑n

i=1 ecxi Weighted Linex loss
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Likelihood with Bregman divergence

One may wonder, “what is the corresponding distribution family to Bregman
divergence?”

Banerjee et al. (2005) showed that any member of the natural exponential
family corresponds to a unique and distinct member of Bregman divergence.

This implies that the developed class of likelihood functions by Bregman
divergence contains the natural exponential family as a subset.

For example, if we define ψ(y) =
∑n

i=1 {yi log yi}, then our likelihood reduces
to the Poisson likelihood,

f (y |β) ∝ exp [−BDψ (y ,h(Xβ))]

∝ exp
[
−

n∑
i=1

{
yi log

(
yi

h(xT
i β)

)
− (yi − h(xT

i β))
}]

∝
n∏

i=1

[
e−h(xT

i β) {h(xT
i β)}yi

]
.
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Bregman divergence and natural exponential family

Table: Examples of Bregman divergence and related distributions in the natural
exponential family.

ψ(z) BDψ(z1, z2) Distribution
1

2σ2 z2 1
2σ2 (z1 − z2)2 Gaussian

z log z z1 log
(

z1
z2

)
− (z1 − z2) Poisson

− log z z1
z2
− log

(
z1
z2

)
− 1 Exponential

z log z + (1− z) log(1− z) z1 log
(

z1
z2

)
+ (1− z1) log

(
1−z1
1−z2

)
Bernoulli
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Pseudo-likelihood with Bregman divergence

In fact, our Bregman divergence approach encompasses a wide range of
likelihood functions.

For instance, Zhang et al. (2009) verified that the quasi-likelihood function
(Wedderburn, 1974) belongs to the class of Bregman divergence.

Let ψ(y) =
∑n

i=1
∫ yi
−∞

yi−s
V (s) ds, where V (·) is a positive known function.

Then, it can be shown that our likelihood reduces to the quasi-likelihood,

f (y |β) ∝ exp [−BDψ (y ,h(Xβ))]

∝ exp
{ n∑

i=1

∫ h(xT
i β)

−∞

yi − s
V (s) ds

}
.
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GD prior

Now, we define our new prior, called GD prior, by

πGD(β,d) ∝ πG(β|d)πD(d),

such that

πG(β|d) ∝
p∏

j=1

{
d1/2

j exp
(
−dj

2 β
2
j

)}
(Gaussian),

πD(d) ∝
p∏

j=1

{
dλ−1/2

j exp
(
−τ

2

2 dj

)}
(Diffused-gamma),

where τ(> 0) is determined to be sufficiently small.
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Connection to `0-norm penalization

Recall that a valid approximation of the `0-norm penalty was defined as

˜̀0,τ (β) = λ

p∑
j=1

β2
j

τ 2 + β2
j
.

It can be shown that

arg max
β

{
f (y |β)πGD(β, d̂)

}
= arg min

β

[
BDψ {y ,h (Xβ)}+ ˜̀0,τ (β)

]
,

where d̂ = arg maxd {maxβ f (y |β)πGD(β,d)}.

For τ ≈ 0, our MAP estimator of β approximates the penalized Bregman
divergence estimator with the `0-norm penalty.
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Maximum A Posteriori (MAP) estimation

The MAP estimator, say β̂, can be obtained by

(β̂, d̂) = arg max
β,d
{f (y |β)πG(β|d)πD(d)} .

Using the Iterated Conditional Modes (ICM) algorithm, β̂ can be obtained by
iteratively updating the current β̂ as follows:

d̂ ← arg max
d

{
πG(β̂|d)πD(d)

}
;

β̂ ← arg max
β

{
f (y |β)πG(β|d̂)

}
;

until convergence.
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ICM algorithm

Our component-wise updating ICM algorithm can be summarized as follows:

Set an initial value β̂ = β(0).
Update β̂ as follows: for j = 1, 2, . . . , p;

d̂j ← 2λ
τ 2

0 + (β̂j)2
;

β̃j ← arg min
β̂j

[
BDψ

{
y , h

(
Xβ̂
)}

+ d̂j

2 β̂
2
j

]
;

ξj ← 2/
√

2λ
τ 2

0 + (β̃j)2
;

β̂j ← β̃j1{|β̃j | > ξj};

until convergence.
Return β̂.
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Prior specification

In our Bayesian approach, the determination of the hyperparameter λ is
important because it controls the degree of the sparsity of our MAP
estimator.

To select the optimal λ, we utilize the marginal likelihood (or equivalently the
Bayes factor) as follows:

m(y |λ) =
∫

f (y |β)πG (β|dλ)dβ,

where dλ denotes the MAP of d given λ.

The optimal value of λ can be defined as

λ̂ = arg max
λ

m(y |λ).
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Simulation studies
We assessed the performance of GD method using a Monte Carlo simulation
study.

For the purpose of comparison, we also considered widely-used PL methods,
Elastic-net, LASSO, adaptive LASSO, SCAD, and MCP.

We measured the estimation accuracy using the following two types of mean
squared error (MSE):

MSEest = 1
p ‖β̂ − β‖2; MSEpred = 1

n‖Xβ̂ − Xβ‖2.

To assess the variable selection performance, we calculated False Positive
Rate (FPR) and False Negative Rate (FNR) as follows:

FPR% = 100× FP
TN + FP ; FNR% = 100× FN

TP + FN ,

where TP, FP, TN and FN denote the numbers of true non-zeros, false
non-zeros, true zeros and false zeros, respectively.
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Simulation studies
Set-up

We generate 1000 data sets from each of the following three cases: for
i = 1, . . . , n,

M1. Generate yi
iid∼ N(µi , 1) with µi = h1(xT

i β), where h1(x) = x ,
β = (rep(2, 5), rep(0, 10), rep(−2, 5), rep(0, p − 20))T, and x i

iid∼ Np(0,Σ)
with Σ = (Σij)p×p and Σij = ρ|i−j|.

M2. Generate yi
iid∼ Bernoulli(pi ) with pi = h2(xT

i β), where
β = (rep(2, 2), rep(0, 10), rep(−2, 1), rep(0, p − 13))T, h2(x) = 1

1+exp(−x) ,

and x i
iid∼ Np(0,Σ) with Σ = (Σij)p×p and Σij = ρ|i−j|.

M3. Generate yi
iid∼ Poisson(µi ) with µi = h3(xT

i β), where
β = (rep(2, 3), rep(0, 10), rep(−2, 3), rep(0, p − 16))T, h3(x) = exp (x),
x i = Φ(zi )− 0.51p, Φ(zi ) = (Φ(zi1), . . . ,Φ(zip))T, Φ(·) is the CDF of
standard normal distribution, and zi

iid∼ Np(0,Σ) with Σ = (Σij)p×p and
Σij = ρ|i−j|.
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Simulation studies
Bregman divergence specification

To specify the Bregman divergence likelihood function, we define

M1 : ψ(x) =
n∑

i=1

{
x2

i
2

}
,

M2 : ψ(x) =
n∑

i=1
{xi log xi + (1− xi ) log(xi − 1)} ,

M3 : ψ(x) =
n∑

i=1
{xi log xi} ,
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Simulation studies
Result

Table: Simulation results for continuous data (M1).

Case (n, p, ρ) Method MSEest MSEpred FPR% FNR%
M1 (100,100,0.5) Oracle 0.0018 0.1028 0.0000 0.0000

GD 0.0019 0.1070 0.0000 0.0000
a-LASSO 0.0133 1.6622 4.6000 0.0000

E-net 0.0120 1.6084 5.6667 0.0000
Lasso 0.0138 1.7399 4.2333 0.0000
MCP 0.0040 0.2136 0.5889 0.0000
SCAD 0.0046 0.2393 0.6333 0.0000

(100,500,0.5) Oracle 0.0004 0.0995 0.0000 0.0000
GD 0.0004 0.1052 0.0000 0.0000

a-LASSO 0.0025 1.5074 1.6612 0.0000
E-net 0.0024 1.5681 2.1796 0.0000
Lasso 0.0025 1.5404 1.7204 0.0000
MCP 0.0009 0.2254 0.3714 0.0000
SCAD 0.0010 0.2516 0.4122 0.0000

Oracle: MLE under the true model.
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Simulation studies
Result

Table: Simulation results for binary data (M2).

Case (n, p, ρ) Method MSEest MSEpred FPR% FNR%
M2 (100,100,0.5) Oracle 0.0149 0.0039 0.0000 0.0000

GD 0.0238 0.0110 0.6495 0.0000
a-LASSO 0.0542 0.0301 1.7732 0.0000

E-net 0.0765 0.0545 1.8351 2.0000
Lasso 0.0542 0.0301 1.7732 0.0000
MCP 0.0447 0.0235 2.1237 0.0000
SCAD 0.0480 0.0256 2.2165 0.0000

(100,500,0.5) Oracle 0.0003 0.0005 0.0000 0.0000
GD 0.0017 0.0026 0.0342 0.0000

a-LASSO 0.0019 0.0062 0.0201 0.3333
E-net 0.0025 0.0107 0.0241 0.6667
Lasso 0.0019 0.0062 0.0201 0.3333
MCP 0.0017 0.0051 0.0262 0.3333
SCAD 0.0018 0.0058 0.0302 0.3333
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Simulation studies
Result

Table: Simulation results for count data (M3).

Case (n, p, ρ) Method MSEest MSEpred FPR% FNR%
M3 (100,100,0.5) Oracle 0.0040 1.3862 0.0000 0.0000

GD 0.0049 1.5019 0.0638 0.0000
a-LASSO 0.0103 4.1607 3.2128 0.0000

E-net 0.0126 5.1199 8.6809 0.0000
Lasso 0.0103 4.1607 3.2128 0.0000
MCP 0.0077 5.4540 0.9255 0.5000
SCAD 0.0084 5.4122 1.0213 0.8333

(100,500,0.5) Oracle 0.0008 1.3339 0.0000 0.0000
GD 0.0011 1.5134 0.0263 0.0000

a-LASSO 0.0031 6.1365 1.0891 0.0000
E-net 0.0054 6.6374 3.5789 0.0000
Lasso 0.0031 6.1365 1.0891 0.0000
MCP 0.0086 8.7068 0.6943 6.6667
SCAD 0.0065 7.4857 0.7126 5.0000
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Summary of simulation result

The result clearly shows that our GD method always performs better than all
the PL methods.

Furthermore, our GD method is comparable to the Oracle method (MLE
under the true model).
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Real data analysis: predictive binary classification

In practice, especially in genetics study, a researcher conducts a pre-screening
procedure such as Sure Independence Screening (SIS) (Fan and Lv, 2008;
Fan and Song, 2010) to reduce the ultra-high dimensionality (n� p) prior to
the estimation.

We studied collaborative performance of our proposed method with SIS for
classification problem using Leukemia data (Fan and Lv, 2008).
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Data description: Leukemia data

Leukemia data are available in R package SIS.

This data set consists of 72 samples with 7,129 genes.

For the i th observation, the response variable yi is a binary outcome,
indicating the types of acute leukemia (Acute Lymphoblastic Leukemia= 0
and Acute Myeloid Leukemia= 1)

The predictor vector x i gives the expression levels of 7,129 genes.

Define the probability of being Acute Myeloid Leukemia (AML) for the i th

sample as pi =Probability(yi = 1).
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Set-up

The link function h is defined as

pi = h(xT
i β) = [1 + exp (−xT

i β)]−1
,

i.e., logit link.

To specify the convex function, we define

ψ(x) =
n∑

i=1
{xi log xi + (1− xi ) log(xi − 1)} ,

which induces the Bernoulli likelihood.
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Analysis procedure

We randomly split the data into training set (of size 38) and test set (of size
34).

First, we conduct a pre-screening procedure (SIS) to reduce the
ultra-high-dimensionality on the training set.

Using SIS, we select the top 152(= 4n) genes, then analyze the reduced
training data set using the GD method and the PL methods used in the
simulation study.

Using the test set, we compute Area Under Curve (AUC) for each method.

We repeat the above procedure 100 times.
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Analysis result

The GD method provided the largest AUC using the smallest number of
genes.

Table: Average of AUC and Number of selected predictors

Method AUC Number of predictors
GD 0.9853 1.36

a-LASSO 0.9800 12.68
E-net 0.9812 28.57
Lasso 0.9826 12.86
MCP 0.9787 8.70

SCAD 0.9790 11.35
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Concluding remarks

From a Bayesian perspective, we have developed a new approach to sparse
high-dimensional problems using Bregman divergence and a valid `0-norm
approximation.

One advantage of our divergence-based approach is that many extensions can
be easily developed by replacing a new divergence measure in the likelihood
function.

For example, using Bregman matrix divergence (Kulis et al., 2009), our
model can be adapted to multivariate regression models.
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Q/A

Thank you!
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