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Efron’s Bootstrap, Efron (1979, 1982), Singh (1981),
Bickel and Freedman (1981)

Observed values x = (x1, x2, . . . , xn)

Bootstrap values x∗ = (x∗1 , x
∗
2 , . . . , x

∗
n ) sampled n times with

replacement from x.

Do B bootstrap samples x∗1, x∗2, . . . , x∗B .

θ̂(x), θ̂(x∗b)

θ̂(x∗∗) =
∑B

b=1 θ̂(x∗b)/B

ŜE[θ̂(x)] =
{

1
B−1

∑B
b=1[θ̂(x∗b)− θ̂(x∗∗)]2

} 1
2
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Rubin’s Bayesian Bootstrap (BB), Rubin (1979, 1982), Lo
(1987)

Step 1. Draw n − 1 uniform[0, 1] r.v.’s.
Let their ordered values be a1, a2, . . . , an−1. Let
a0 = 0; an = 1.

Step 2. Draw each of the n values in x∗b = (x∗b1 , x∗b2 , . . . , x∗bn )
independently from x1, x2, . . . , xn with probabilities
(a1 − a0), (a2 − a1), . . . , (an − an−1).
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Rubin’s BB: Why Bayesian?

Vector of probabilities λ = (λ1, λ2, . . . , λK ).
xi i.i.d., Pr(xi = dk) = λk ,

∑
λk = 1.

Rubin(1981) showed BB like assuming (improper) prior

Pr(λ) =
∏K

k=1 λ
−1
k if

∑
λk = 1 and 0 otherwise.

Posterior:

Pr(λ) ∝
∏K

k=1 λ
nk−1
k

where nk = #{xi = dk}.
Lo (1987) showed BB has same desirable large sample
properties as Efron’s bootstrap.
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Finite Population Bootstrap (FPB) of Gross (1980)

Finite population bootstrap (FPB), Gross (1980)

Let y = (y1, y2, . . . , yn) be sample from population

Y = (Y1,Y2, . . . ,YN), n ≤ N − 1

Simple random sampling, either with or without replacement

Assume for simplicity N = kn, integer k .

Create FBP population Y∗ = (Y ∗1 ,Y
∗
2 , . . . ,Y

∗
N) with k copies

of sample.

Each FPB sample y∗ = (y∗1 , y
∗
2 , . . . , y

∗
n ) is a simple random

sample without repacement from Y∗.

See Chapter 6 of Shao and Tu (1995) for extensions.
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Finite Population Bayesian Bootstrap (FPBB) of Lo (1988)

“Pólya Urn Scheme”

An urn contains a finite number of balls.

Select ball from urn at random

Ball is replaced and another ball just like it is also added to
urn.

Continue until a fixed number, say m, of balls is selected.

An urn containing z1, z2, . . . , zn will be denoted by
urn{z1, z2, . . . , zn}.
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Finite Population Bayesian Bootstrap (FPBB) of Lo
(1988), continued

Calculation of a FPBB Replicate

Each replication of FPBB is formed as follows (adapted from Lo,
1988, p. 1686):

Step 1. Draw a Pólya sample of size N − n, denoted by
y∗1 , y

∗
2 , . . . , y

∗
N−n from urn{y1, y2, . . . , yn}.

Step 2. Form the FPBB population
y1, y2, . . . , yn, y

∗
1 , y

∗
2 , . . . , y

∗
N−n.

Lo’s FPBB resamples the population outside the sample rather
than resampling the sample itself.
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Unequal Probability Bayesian Bootstrap (UPBB)

Unequal Probability Sampling

In survey sampling, it is common to select units with unequal
probabilities. For example, if xi is a measure of size (say,
number of employees or total revenue) of business
establishment i , we might select i into the sample with a
probability proportional to xi .

Let πi be the probability that unit i is selected into the
sample.

The (base) weight is wi = 1/πi .

If xi is the number of employees at establishment i and
establishment i is selected into the sample, then wi can be
thought of as the number of employees in the population that
estabishment i represents. (

∑
S wixi estimates number of

employees in population.)
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Unequal Probability Bayesian Bootstrap (UPBB), cont.

Calculation of a UPBB Replicate
Each replication of UPBB is formed in two steps (Cohen, 1997):

Step 1. Draw a sample of size N − n, denoted by
y∗1 , y

∗
2 , . . . , y

∗
N−n, as follows:

Determine y∗k by drawing from y1, y2, . . . , yn with probability

wi − 1 + `i ,k−1
N−n
n

N − n + (k + 1)N−nn

where `i ,k−1 = number of bootstrap selections of yi among
y∗1 , y

∗
2 , . . . , y

∗
k−1. Set `i ,0 = 0 and note that∑n

i=1 `i ,k−1 = k − 1.

Step 2. Form the UPBB population
y1, y2, . . . , yn, y

∗
1 , y

∗
2 , . . . , y

∗
N−n.
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UPBB: Why is it Bayesian?

Vector of probabilities λ = (λ1, λ2, . . . , λK ).
Pr(yi = dk) = λk ,

∑
λk = 1.

From Dong, Elliott, and Raghunathan (2014), assume
(improper) prior

Pr(λ) =
∏K

k=1 λ
−1
k if

∑
λk = 1 and 0 otherwise.

Let zk =
∑n

j=1(wj − 1)× I (yj = dk) and nk = #{yi = dk}.
Likelihood:

Pr(y1, . . . , yn|λ) ∝
∏K

k=1 λ
zk
k .

Posterior:
Pr(y∗1 , y

∗
2 , . . . , y

∗
N−n|y1, y2, . . . , yn) ∝

∏K
k=1

Γ(zk+nk )
Γ(zk )
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Lo’s FPBB and Multiple Imputation (MI)

Goal of imputation is to produce a complete sample.

Multiple imputation repeats the imputation process to assess
variability.

Correspondence between Lo’s FPBB and multiple imputation:

Lo’s FPBB Multiple Imputation

population size N sample size n
sample size n number of respondents r
size of nonsample N − n number of missing m = n − r
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Multiple Imputation (MI)

Let I j denote the indicator that is 1 if unit j was sampled
and responded, 0 otherwise. Let I be the vector of I j values,
j = 1, . . . , n.

Let c∗bj = #{y∗bi = yj} be the number of times respondent j

is used in bootstrap replicate b (c∗bj ≥ 1). Let c∗ be the

vector of c∗bj values for a specific b.

Then

var θ̂(I, c∗) = varI E∗

[
θ̂(I, c∗)|I

]
+ EI var∗

[
θ̂(I, c∗)|I

]
.
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Dong, Elliott, and Raghunathan (2014)

Gives a nonparametric method to generate synthetic
populations accounting for complex sampling (not MI).

Uses UPBB.

Notes that draws from “weighted” Pólya urn can be produced
using function wtpolyap in R package polypost.
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Zhou, Elliott, and Raghunathan (2016)

Treats MI.

Uses UPBB.

Considers two-stage designs (e.g., sampling schools, then
students within the school).

Meeden (1999) considered equal-probability two-stage
designs, showed step-wise Bayes.

Zhou et al. treats MI in unequal probability two-stage setting.

See also Zhou’s 2014 University of Michigan Ph. D.
dissertation.
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