Finite Population Unequal Probability Bayesian Bootstraps and Multiple Imputation

Mike Cohen

American Institutes for Research

University of Connecticut, Storrs, 12 May 2018
Conference on Bayesian Modeling, Computation, and Applications
in Honor of Lynn Kuo
Outline

- Efron’s Bootstrap
- Rubin’s Bayesian Bootstrap
- Gross’s Finite Population Bootstrap
- Lo’s Finite Population Bayesian Bootstrap
- Unequal Probability Bayesian Bootstrap
- Connections to Multiple Imputation
- Recent Work

- Observed values \(x = (x_1, x_2, \ldots, x_n) \)
- Bootstrap values \(x^* = (x_1^*, x_2^*, \ldots, x_n^*) \) sampled \(n \) times with replacement from \(x \).
- Do \(B \) bootstrap samples \(x^{*1}, x^{*2}, \ldots, x^{*B} \).
- \(\hat{\theta}(x) \), \(\hat{\theta}(x^{*b}) \)
- \(\hat{\theta}(x^{**}) = \sum_{b=1}^{B} \hat{\theta}(x^{*b}) / B \)
- \(\hat{\text{SE}}[\hat{\theta}(x)] = \left\{ \frac{1}{B-1} \sum_{b=1}^{B} [\hat{\theta}(x^{*b}) - \hat{\theta}(x^{**})]^2 \right\}^{\frac{1}{2}} \)
Rubin’s Bayesian Bootstrap (BB), Rubin (1979, 1982), Lo (1987)

- **Step 1.** Draw $n - 1$ uniform $[0, 1]$ r.v.’s. Let their ordered values be $a_1, a_2, \ldots, a_{n-1}$. Let $a_0 = 0$; $a_n = 1$.

- **Step 2.** Draw each of the n values in $x^{*b} = (x_1^{*b}, x_2^{*b}, \ldots, x_n^{*b})$ independently from x_1, x_2, \ldots, x_n with probabilities $(a_1 - a_0), (a_2 - a_1), \ldots, (a_n - a_{n-1})$.
Rubin’s BB: Why Bayesian?

- Vector of probabilities $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_K)$.
 x_i i.i.d., $\Pr(x_i = d_k) = \lambda_k$, $\sum \lambda_k = 1$.

- Rubin(1981) showed BB like assuming (improper) prior
 $\Pr(\lambda) = \prod_{k=1}^{K} \lambda_k^{-1}$ if $\sum \lambda_k = 1$ and 0 otherwise.

- Posterior:
 $\Pr(\lambda) \propto \prod_{k=1}^{K} \lambda_k^{n_k-1}$
 where $n_k = \# \{x_i = d_k\}$.

- Lo (1987) showed BB has same desirable large sample properties as Efron’s bootstrap.
Finite Population Bootstrap (FPB) of Gross (1980)

- Finite population bootstrap (FPB), Gross (1980)
- Let \(y = (y_1, y_2, \ldots, y_n) \) be sample from population \(Y = (Y_1, Y_2, \ldots, Y_N) \), \(n \leq N - 1 \)
- Simple random sampling, either with or without replacement
- Assume for simplicity \(N = kn \), integer \(k \).
- Create FBP population \(Y^* = (Y_1^*, Y_2^*, \ldots, Y_N^*) \) with \(k \) copies of sample.
- Each FPB sample \(y^* = (y_1^*, y_2^*, \ldots, y_n^*) \) is a simple random sample without replacement from \(Y^* \).
- See Chapter 6 of Shao and Tu (1995) for extensions.
Finite Population Bayesian Bootstrap (FPBB) of Lo (1988)

“Pólya Urn Scheme”

- An urn contains a finite number of balls.
- Select ball from urn at random
- Ball is replaced and another ball just like it is also added to urn.
- Continue until a fixed number, say m, of balls is selected.
- An urn containing z_1, z_2, \ldots, z_n will be denoted by $\text{urn}\{z_1, z_2, \ldots, z_n\}$.
Calculation of a FPBB Replicate

Each replication of FPBB is formed as follows (adapted from Lo, 1988, p. 1686):

- **Step 1.** Draw a Pólya sample of size $N - n$, denoted by $y_1^*, y_2^*, \ldots, y_{N-n}^*$ from $\text{urn}\{y_1, y_2, \ldots, y_n\}$.
- **Step 2.** Form the FPBB population $y_1, y_2, \ldots, y_n, y_1^*, y_2^*, \ldots, y_{N-n}^*$.

Lo’s FPBB resamples the population outside the sample rather than resampling the sample itself.
Unequal Probability Bayesian Bootstrap (UPBB)

Unequal Probability Sampling

- In survey sampling, it is common to select units with unequal probabilities. For example, if x_i is a measure of size (say, number of employees or total revenue) of business establishment i, we might select i into the sample with a probability proportional to x_i.
- Let π_i be the probability that unit i is selected into the sample.
- The (base) weight is $w_i = 1/\pi_i$.
- If x_i is the number of employees at establishment i and establishment i is selected into the sample, then w_i can be thought of as the number of employees in the population that establishment i represents. ($\sum_S w_i x_i$ estimates number of employees in population.)
Unequal Probability Bayesian Bootstrap (UPBB), cont.

Calculation of a UPBB Replicate

Each replication of UPBB is formed in two steps (Cohen, 1997):

- **Step 1.** Draw a sample of size $N - n$, denoted by $y_1^*, y_2^*, \ldots, y_{N-n}^*$, as follows:

 Determine y_k^* by drawing from y_1, y_2, \ldots, y_n with probability

 $$
 w_i - 1 + \ell_{i,k-1} \frac{N-n}{n}

 N - n + (k + 1) \frac{N-n}{n}
 $$

 where $\ell_{i,k-1} = \text{number of bootstrap selections of } y_i \text{ among } y_1^*, y_2^*, \ldots, y_{k-1}^*$. Set $\ell_{i,0} = 0$ and note that

 $$
 \sum_{i=1}^{n} \ell_{i,k-1} = k - 1.
 $$

- **Step 2.** Form the UPBB population

 $y_1, y_2, \ldots, y_n, y_1^*, y_2^*, \ldots, y_{N-n}^*$.

UPBB: Why is it Bayesian?

- Vector of probabilities \(\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_K) \).
 \[
 \Pr(y_i = d_k) = \lambda_k, \quad \sum \lambda_k = 1.
 \]
- From Dong, Elliott, and Raghunathan (2014), assume (improper) prior
 \[
 \Pr(\lambda) = \prod_{k=1}^{K} \lambda_k^{-1} \quad \text{if} \quad \sum \lambda_k = 1 \quad \text{and} \quad 0 \quad \text{otherwise}.
 \]
- Let \(z_k = \sum_{j=1}^{n} (w_j - 1) \times I(y_j = d_k) \) and \(n_k = \# \{ y_i = d_k \} \).
- Likelihood:
 \[
 \Pr(y_1, \ldots, y_n | \lambda) \propto \prod_{k=1}^{K} \lambda_k^{z_k}.
 \]
- Posterior:
 \[
 \Pr(y_1^*, y_2^*, \ldots, y_{N-n}^* | y_1, y_2, \ldots, y_n) \propto \prod_{k=1}^{K} \frac{\Gamma(z_k+n_k)}{\Gamma(z_k)}
 \]
Lo’s FPBB and Multiple Imputation (MI)

- Goal of imputation is to produce a *complete sample*.
- Multiple imputation repeats the imputation process to assess variability.
- Correspondence between Lo’s FPBB and multiple imputation:

<table>
<thead>
<tr>
<th>Lo’s FPBB</th>
<th>Multiple Imputation</th>
</tr>
</thead>
<tbody>
<tr>
<td>population size N</td>
<td>sample size n</td>
</tr>
<tr>
<td>sample size n</td>
<td>number of respondents r</td>
</tr>
<tr>
<td>size of nonsample $N - n$</td>
<td>number of missing $m = n - r$</td>
</tr>
</tbody>
</table>
Multiple Imputation (MI)

- Let \mathcal{I}_j denote the indicator that is 1 if unit j was sampled \textbf{and} responded, 0 otherwise. Let \mathcal{I} be the vector of \mathcal{I}_j values, $j = 1, \ldots, n$.

- Let $c_{j}^{*b} = \#\{y_{i}^{*b} = y_{j}\}$ be the number of times respondent j is used in bootstrap replicate b ($c_{j}^{*b} \geq 1$). Let c^{*} be the vector of c_{j}^{*b} values for a specific b.

- Then

$$\text{var} \hat{\theta}(\mathcal{I}, c^{*}) = \text{var}_{\mathcal{I}} \mathbb{E}_{*}\left[\hat{\theta}(\mathcal{I}, c^{*})|\mathcal{I}\right] + \mathbb{E}_{\mathcal{I}} \text{var}_{*}\left[\hat{\theta}(\mathcal{I}, c^{*})|\mathcal{I}\right].$$
Dong, Elliott, and Raghunathan (2014)

- Gives a nonparametric method to generate synthetic populations accounting for complex sampling (not MI).
- Uses UPBB.
- Notes that draws from “weighted” Pólya urn can be produced using function wtpolyap in R package `polypost`.
Zhou, Elliott, and Raghunathan (2016)

- Treats MI.
- Uses UPBB.
- Considers two-stage designs (e.g., sampling schools, then students within the school).
- Zhou et al. treats MI in unequal probability two-stage setting.
- See also Zhou’s 2014 University of Michigan Ph. D. dissertation.
References I

References III

Thank You!