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Introduction

� Four stages: normality, memory-impaired intermediate,
dementia and death without dementia.

� Motivation: to estimate the transitional probabilities and to
discover risk factors.

� To analyze longitudinal data, we develop the likelihood
function based on a first order Markov chain model.

� We extend from typical illness-death model to a stochastic
model consisting of four stages, and construct a reversible
transition model between normality and memory-impaired
intermediate.
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Notation

� X(s): the stage at time s
πjl(s, t) = P (X(t) = l|X(s) = j)

λjl(t) = lim
∆t→0

P [X(t+∆t)=l|X(t)=j]
∆t = lim

∆t→0

πjl(t,t+∆t)
∆t

� Consider time-homogeneous models: λjl(t) is independent of
t, that is, λjl(t) = λjl, for any t.
πjl(T ) = πjl(s, s+ T ) = πjl(0, T )

π′jl(T ) = lim
∆t→0

πjl(s,s+T+∆t)−πjl(s,s+T )
∆t

λj =
∑
l 6=j

λjl
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Kolmogrov’s Backward Equation (for continuous-time
Markov chain)

πjl(T + ∆t)− πjl(T ) =
∑
k

πjk(∆t)πkl(T )− πjl(T )

=
∑
k 6=j

πjk(∆t)πkl(T )− (1− πjj(∆t))πjl(T )

lim
∆t→0

πjl(T + ∆t)− πjl(T )

∆t

= lim
∆t→0

{
∑
k 6=j

πjk(∆t)

∆t
πkl(T )− (1− πjj(∆t))

∆t
πjl(T )}

π′jl(T ) =
∑
k 6=j

λjkπkl(T )− λjπjl(T ) (KB)
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Illness-death Model

� Model Structure
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Illness-death Model

� Transitional Probability Matrix π00 π01 π02

0 π11 π12

0 0 1


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Illness-death Model

π′jl(T ) =
∑
k 6=j

λjkπkl(T )− λjπjl(T ) (KB)

⇒


π′00(T ) = −λ0π00(T )
π′11(T ) = −λ1π11(T

π′01(T ) = λ01π11(T )− λ0π01(T )

π00(0) = π11(0) = 1, π01(0) = 0
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Illness-death Model

� The transitional probabilities are

π00(T ) = e−λ0T

π01(T ) =
λ01

λ0 − λ1
[e−λ1T − e−λ0T ]

π02(T ) = 1− π00(T )− π01(T )

π11(T ) = e−λ1T

π12(T ) = 1− π11(T )

Qi Qi (with Dr.Lynn Kuo) UCONN

BMCA



Song et.al (2011) Model

� Model Structure
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Song et.al (2011) Model

� Transitional Probability Matrix
π11 π12 π13 π14

π21 π22 π23 π24

0 0 1 0
0 0 0 1


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Song et.al (2011) Model

π′jl(T ) =
∑
k 6=j

λjkπkl(T )− λjπjl(T ) (KB)

π′11(T ) = λ12π21(T )− λ1π11(T )

π′21(T ) = λ21π11(T )− λ2π21(T )

π′12(T ) = λ12π22(T )− λ1π12(T )

π′22(T ) = λ21π12(T )− λ2π22(T )

π′13(T ) = λ12π23(T ) + λ13 − λ1π13(T )

π′23(T ) = λ21π13(T ) + λ23 − λ2π23(T )
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Song et.al (2011) Model

π11(T ) =
λ2 − λ1 + k

2k
e

−(λ1+λ2)+k
2

T − λ2 − λ1 − k
2k

e
−(λ1+λ2)−k

2
T

π12(T ) =
λ12

k
(e

−(λ1+λ2)+k
2

T − e
−(λ1+λ2)−k

2
T )

π13(T ) =
λ13

k
(e

−(λ1+λ2)+k
2

T − e
−(λ1+λ2)−k

2
T )

π14(T ) = 1− π11(T )− π12(T )− π13(T )
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Song et.al (2011) Model

π21(T ) =
λ21

k
(e

−(λ1+λ2)+k
2

T − e
−(λ1+λ2)−k

2
T )

π22(T ) =
λ1 − λ2 + k

2k
e

−(λ1+λ2)+k
2

T − λ1 − λ2 − k
2k

e
−(λ1+λ2)−k

2
T

π23(T ) = −λ13

λ12
+
λ13(λ1 − λ2 + k)

2λ12k
e

−(λ1+λ2)+k
2

T

−λ13(λ1 − λ2 − k)

2λ12k
e

−(λ1+λ2)−k
2

T

π24(T ) = 1− π21(T )− π22(T )− π23(T )

where k =
√

(λ1 − λ2)2 + 4λ12λ21
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SOMI Model, Grober et.al (2018)

� Stages classification
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SOMI Model, Grober et.al (2018)

� Model Structure
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SOMI Model, Grober et.al (2018)

� Transitional Probability Matrix
π00 π01 π02 π03 π04

0 π11 π12 π13 π14

0 π21 π22 π23 π24

0 π31 π32 π33 π34

0 0 0 0 1


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SOMI Model, Grober et.al (2018)

π′jl(T ) =
∑
k 6=j

λjkπkl(T )− λjπjl(T ) (KB)

π′00(T ) = −λ0π00(T )

π′01(T ) = λ01π11(T ) + λ02π21(T ) + λ03π31(T )− λ0π01(T )

π′11(T ) = λ12π21(T ) + λ13π31(T )− λ1π11(T )

π′21(T ) = λ21π11(T ) + λ23π31(T )− λ2π21(T )

π′31(T ) = λ31π11(T ) + λ32π21(T )− λ3π31(T )

π′02(T ) = λ01π12(T ) + λ02π22(T ) + λ03π32(T )− λ0π02(T )
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SOMI Model, Grober et.al (2018)

π′12(T ) = λ12π22(T ) + λ13π32(T )− λ1π12(T )

π′22(T ) = λ21π12(T ) + λ23π32(T )− λ2π22(T )

π′32(T ) = λ31π12(T ) + λ32π22(T )− λ3π32(T )

π′03(T ) = λ01π13(T ) + λ02π23(T ) + λ03π33(T )− λ0π03(T )

π′13(T ) = λ12π23(T ) + λ13π33(T )− λ1π13(T )

π′23(T ) = λ21π13(T ) + λ23π33(T )− λ2π23(T )

π′33(T ) = λ31π13(T ) + λ32π23(T )− λ3π33(T )
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Likelihood

� Our model formulation can be used for both continuous and
discrete-time Markov processes.

� We concentrate here on the discrete case in which we observe
study participants at equally spaced time points (study
waves).
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Likelihood

� Let k denote a time point of observation, k = 0, 1, 2, ...,K;
k = 0 to denote study baseline.

� Define the following random variable:

y
(k)
i (jl) = 1 if a subject i is in stage j at time k and in stage l

at time (k + 1);

y
(k)
i (jl) = 0 otherwise, for 0 ≤ k ≤ K − 1.
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Likelihood (first-order Markov transitional probability and
time-independent transitional hazard rates)

L =

n∏
i=1

K−1∏
k=0

π11(k, k + 1)y
(k)
i (11)π12(k, k + 1)y

(k)
i (12)

π13(k, k + 1)y
(k)
i (13)π14(k, k + 1)y

(k)
i (14)π21(k, k + 1)y

(k)
i (21)

π22(k, k + 1)y
(k)
i (22)π23(k, k + 1)y

(k)
i (23)π24(k, k + 1)y

(k)
i (24)
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Likelihood

� Since the πjl’s are functions of the transitional hazards, λjl,
parameter estimates of λjl can be computed by using
maximum likelihood methods.

� We will use ordinal logistic regression to investigate what
covariates have significant influence on the transition.
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