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Disease Mapping: Mapping Random Effects

Model-based estimates of random effects across 87 counties in Minnesota

[Infant Mortality Rates] = [Intercept] + [Fixed Effects]

+ [County-wise Random Effects]
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CAR models

I Conditional autoregressive (CAR) model (Besag, 1974; Clayton and
Bernardinelli, 1992)

I Areal data modeled as a graph or network: V is the set of vertices
(regions)

I i ∼ j if regions i and j share a common border
I Adjacency matrix A = (aij) such that aij = I(i ∼ j)
I ni is the number of neighbors of i
I CAR model:

wi |w−i ∼ N

 ρ

ni

∑
j | i∼j

wj , τwni


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Hierarchical GLM for Spatial disease mapping

I At unit (region) i, we observe response yi and covariate xi
I g(E(yi)) = x>i β + wi where g(·) denotes a suitable link function

p2(β, τw, ρ)×N(w | 0, τw(D − ρA))×
k∏
i=1

p1(yi |x>i β + wi)

I p1 denotes the density corresponding to the link g(·)
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Disease Mapping: Mapping Random Effects

[Infant Mortality Rates] = [Intercept] + [Fixed Effects] + [County-wise Random Effects]
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SAR models

I Simultaneous Autoregressive (SAR) model (Whittle, 1954)
I Instead of taking the conditional route, SAR model proceeds by

simultaneously modeling the random effects

wi = ρ
∑
i 6=j

bijwj + εi for i = 1, 2, . . . , k

I εi
ind∼ N(0, τi) are errors independent of w

I A common choice is to define bij = I(i ∼ j)/ni
I Joint distribution: w ∼ N(0, (I − ρB)>F (I − ρB)), B = (bij) and
F = diag(τ1, τ2, . . . , τk)
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Interpretation of ρ in proper CAR and SAR models

I Calibration of ρ as a correlation, e.g., (as reported in Banerjee et al.
2014)

ρ = 0.80 yields 0.1 ≤ Moran’s I ≤ 0.15,
ρ = 0.90 yields 0.2 ≤ Moran’s I ≤ 0.25,
ρ = 0.99 yields Moran’s I ≤ 0.5

I So, used with random effects, scope of spatial pattern may be limited
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Interpretation of ρ in proper CAR and SAR models

I ρ cannot be interpreted as correlation between neighboring wi’s (Wall,
2004; Assuncao and Krainski, 2009)

Figure: Neighbor pair correlations as a function of ρ for proper CAR and SAR
models over the graph of US states
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What if we construct a Directed Acyclic Graph

p(w) = p(w1)p(w2 |w1)p(w3 |w1, w2) · · · p(wn |w1, w2, . . . , wk−1)

w1 = ε1 ; ε1 ∼ N(0, τ1)
w2 = b21w1 + ε2 ; N(0, τ2)
w3 = b31w1 + b32w2 + ε3 ; N(0, τ3)

...
wk = bk1w1 + bk1w2 + . . .+ bk,k−1wk−1 + εk ; N(0, τk)

I w = Bw + ε, where ε ∼ N(0, F ) and F = diag(τ1, . . . , τk)

B = (bij) is now a strictly lower triangular matrix.
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What if we construct a Directed Acyclic Graph

I Advantages of lower triangular B:

I w ∼ N(0, (I −B)>F (I −B)) is a proper distribution for any choice of
lower triangular B

I det(L>FL) =
∏n

i=1 τi where F = diag(τ1, . . . , τk) and L = I −B

I w>L>FLw = τ1w
2
1 +

∑k

i=2 τi(wi −
∑

{j<i} wjbij)2

I Likelihood N(w | 0, (I −B)>F (I −B)) can be computed using
O(k + s) flops where s denotes the sparsity (number of non-zero entries)
of B.

I Even if k is large, evaluation of likelihood is fast if each region only
shares border with a few others
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Choice of B and F

I How to specify B and F ?

I Sparsity of B is desirable

I bij = 0 for j outside neighbor sets N(i)
I Pros: For graphs with a fixed topological order, neighbor sets can be

chosen: N(i) = {j | j ∼ i, j < i}
I Cons: There is no covariance function on arbitrary graphs from which we

can obtain non-zero bij’s and F
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Autoregressive models on trees

I D = (dij) is the shortest distance matrix on the graph

I If the graph was a tree (no loops), then ρD = {ρdij} is then a valid
autoregressive correlation matrix (AR(1) model on a tree, Basseville et
al., 2006).

I Areal graphs are loopy and are not usually trees
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Local embedded spanning trees

I Embedded spanning trees (EST) of a graph G is a subgraph of G which
is a tree and spans all the vertices of G

I Note that to specify wi =
∑
j∈N(i) bijwj + εi we only need a joint

distribution on {i} ∪N(i)

I Let Gi denote the subgraph of G which includes vertices {i} ∪N(i)
and the edges among them

I The subgraph Ti of Gi which only contains the edges
{i ∼ j | j ∈ N(i)} is an embedded spanning tree of Gi

I Use the local embedded spanning trees Ti to specify the bij’s and τi
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Directed acyclic graph autoregressive (DAGAR) model

I ARi denotes the AR(1) distribution on Ti
I Solve for bij and τi such that EARi(wi |wN(i)) =

∑
j∈N(i) bijwj and

τi = 1/V arARi(wi |wN(i))
I No edge is left out !

Figure: Decomposing a graph into a sequence of embedded spanning trees
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Properties of DAGAR models

I bij = bi = ρ/(1 + (|N(i)| − 1)ρ2)

I τi = (1 + (|N(i)| − 1)ρ2)/(1− ρ2)

I det(QDAGAR) =
∏k
i=1 τi

I Positive definite for any 0 ≤ ρ ≤ 1

I Interpretability of ρ:
I If the graph is a tree, then DAGAR model is same as the AR(1) model on

the tree i.e. correlation between dth order neighbors is ρd for d = 1, 2, . . .
I If the graph is a closed two-dimensional grid, then each neighbor pair

correlation is ρ

I pDAGAR(w) can be stored and evaluated using O(e+ k) flops where e
is the total number of neighbor pairs

Sudipto Banerjee (UCLA) UCONN 2018: Lynn’s Conference



Averaging Cholesky decompositions over orderings

I Priors over the space of all k! orderings/permutations
I Averaging over Cholesky decompositions of precision matrices:

Q = 1
k!

∑
π

PπLπDπL
T
πP

T
π

I The above produces closed-form expressions for Autoregressive
models:

Qii = 1 + niρ
2

2(1− ρ2) + ρ2

(1− ρ2)
∑
j∼i

f(ρ, nj)

Qij = ρ

1− ρ2 I(i ∼ j) + ρ2

1− ρ2

∑
k∈N(i)∩N(j)

g(ρ, nk) .

I New class of DAGAR models for areal/lattice data (Datta et al., 2017)
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Interpretation of ρ
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(a) path graph
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(b) grid graph
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(c) USA state map

Figure: Average neighbor pair correlations as a funcion of ρ for proper CAR and
DAGAR models
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Simulated data analysis
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Figure: Mean square error as a function of ρ and r = τ2/σ2 for DAGAR and CAR
models
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Slovenia stomach cancer data

(a) Standardized cancer incidence (b) Socio-economic score

Figure: Slovenia stomach cancer data

I Observed (Oi) and expected (Ei) number of cancer counts for each of
the 194 municipalities of the country

I Oi ∼ Poisson(Ei exp(α+ βSEi + wi)) where w ∼ N(0, τwQ(ρ))
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Slovenia stomach cancer data

Table: Parameter estimates with confidence intervals and model comparison metrics

α β ρ DIC LPPDLOOCV
1

CAR 0.09 (0.02, 0.16) -0.12 (-0.19, -0.04) 0.33 (0.02, 0.86) 1097 1170
DAGAR 0.11 (0.03, 0.18) -0.12 (-0.19, -0.06) 0.08 (0.004, 0.24) 1091 1127

DAGAROF 0.11 (0.05, 0.17) -0.12 (-0.18, -0.06) 0.06 (0.003, 0.2) 1090 1133

I Zadnik and Reich (2006) observed spatial confounding with ICAR
model (β̂ICAR = −0.02(−0.10, 0.06))

I Here for all three models the CIs for β lie outside zero
I Estimates of ρ are much smaller than 1
I Estimates of β here are closer to those obtained in the non-spatial (NS)

analysis (β̂NS = −1.4(−0.17,−0.10))

1Log-predictive posterior density using Leave one out cross validation
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Summary

I DAGAR models for areal data constructed from sparse Cholesky factors
I Scalability for large areal data
I Ordered vs order-free DAGAR

I For all analysis, ordered model performed very similar to the order-free
model

I Ordered model is faster with theoretical results about interpretability of ρ

I DAGAR models are positive definite and can be directly used to model
or simulate any multivariate data on graphs (like imaging or social
network data)

I Better performance than CAR modes for many scenarios
I DAGAR available at
https://arxiv.org/pdf/1704.07848.pdf
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Thank You!
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