On Spatial Disease Mapping Models Using Directed Acyclic Graphs

Sudipto Banerjee

Joint work with Abhirup Datta (Johns Hopkins Univ) and James S. Hodges (Univ of Minnesota Twin Cities)

University of California, Los Angeles, USA

Disease Mapping: Mapping Random Effects

Model-based estimates of random effects across 87 counties in Minnesota

[Infant Mortality Rates] = [Intercept] + [Fixed Effects] + [County-wise Random Effects]

- Conditional autoregressive (CAR) model (Besag, 1974; Clayton and Bernardinelli, 1992)
- Areal data modeled as a graph or network: V is the set of vertices (regions)
- $i \sim j$ if regions i and j share a common border
- Adjacency matrix $A = (a_{ij})$ such that $a_{ij} = I(i \sim j)$
- n_i is the number of neighbors of i
- CAR model:

$$w_i \mid w_{-i} \sim N\left(\frac{\rho}{n_i} \sum_{j \mid i \sim j} w_j, \tau_w n_i\right)$$

- At unit (region) *i*, we observe response y_i and covariate x_i
- ► $g(E(y_i)) = x_i^\top \beta + w_i$ where $g(\cdot)$ denotes a suitable link function

$$p_2(\beta, \tau_w, \rho) \times N(w \mid 0, \tau_w(D - \rho A)) \times \prod_{i=1}^k p_1(y_i \mid x_i^\top \beta + w_i)$$

• p_1 denotes the density corresponding to the link $g(\cdot)$

Disease Mapping: Mapping Random Effects

UCONN 2018: Lynn's Conference

- Simultaneous Autoregressive (SAR) model (Whittle, 1954)
- Instead of taking the conditional route, SAR model proceeds by simultaneously modeling the random effects

$$w_i = \rho \sum_{i \neq j} b_{ij} w_j + \epsilon_i \text{ for } i = 1, 2, \dots, k$$

- $\epsilon_i \stackrel{ind}{\sim} N(0, \tau_i)$ are errors independent of w
- A common choice is to define $b_{ij} = I(i \sim j)/n_i$
- ► Joint distribution: $w \sim N(0, (I \rho B)^{\top} F(I \rho B)), B = (b_{ij})$ and $F = diag(\tau_1, \tau_2, \dots, \tau_k)$

Calibration of ρ as a correlation, e.g., (as reported in Banerjee et al. 2014)

$$\begin{aligned} \rho &= 0.80 \text{ yields } 0.1 \leq \text{Moran's } I \leq 0.15, \\ \rho &= 0.90 \text{ yields } 0.2 \leq \text{Moran's } I \leq 0.25, \\ \rho &= 0.99 \text{ yields Moran's } I \leq 0.5 \end{aligned}$$

► So, used with random effects, scope of spatial pattern may be limited

• ρ cannot be interpreted as correlation between neighboring w_i 's (Wall, 2004; Assuncao and Krainski, 2009)

Figure: Neighbor pair correlations as a function of ρ for proper CAR and SAR models over the graph of US states

Sudipto Banerjee (UCLA)

$$p(w) = p(w_1)p(w_2 | w_1)p(w_3 | w_1, w_2) \cdots p(w_n | w_1, w_2, \dots, w_{k-1})$$

$$w_{1} = \epsilon_{1} ; \quad \epsilon_{1} \sim N(0, \tau_{1})$$

$$w_{2} = b_{21}w_{1} + \epsilon_{2} ; \quad N(0, \tau_{2})$$

$$w_{3} = b_{31}w_{1} + b_{32}w_{2} + \epsilon_{3} ; \quad N(0, \tau_{3})$$

$$\vdots$$

$$w_{k} = b_{k1}w_{1} + b_{k1}w_{2} + \ldots + b_{k,k-1}w_{k-1} + \epsilon_{k} ; \quad N(0, \tau_{k})$$

• $w = Bw + \epsilon$, where $\epsilon \sim N(0, F)$ and $F = \operatorname{diag}(\tau_1, \ldots, \tau_k)$

 $B = (b_{ij})$ is now a strictly lower triangular matrix.

Sudipto Banerjee (UCLA)

- Advantages of lower triangular *B*:
 - ► $w \sim N(0, (I B)^{\top} F(I B))$ is a proper distribution for any choice of lower triangular B
 - $\det(L^{\top}FL) = \prod_{i=1}^{n} \tau_i$ where $F = \operatorname{diag}(\tau_1, \dots, \tau_k)$ and L = I B

•
$$w^{\top}L^{\top}FLw = \tau_1 w_1^2 + \sum_{i=2}^k \tau_i (w_i - \sum_{\{j < i\}} w_j b_{ij})^2$$

- Likelihood $N(w \mid 0, (I B)^{\top} F(I B))$ can be computed using O(k + s) flops where s denotes the sparsity (number of non-zero entries) of B.
- Even if k is large, evaluation of likelihood is fast if each region only shares border with a few others

- ▶ How to specify *B* and *F*?
- ► Sparsity of *B* is desirable
- $b_{ij} = 0$ for j outside neighbor sets N(i)
 - ► Pros: For graphs with a fixed topological order, neighbor sets can be chosen: N(i) = {j | j ~ i, j < i}</p>
 - ► Cons: There is no covariance function on arbitrary graphs from which we can obtain non-zero *b_{ij}*'s and *F*

- $D = (d_{ij})$ is the shortest distance matrix on the graph
- If the graph was a tree (no loops), then $\rho^D = \{\rho^{d_{ij}}\}$ is then a valid *autoregressive* correlation matrix (AR(1) model on a tree, Basseville et al., 2006).
- Areal graphs are loopy and are not usually trees

- Embedded spanning trees (EST) of a graph G is a subgraph of G which is a tree and spans all the vertices of G
- Note that to specify w_i = ∑_{j∈N(i)} b_{ij}w_j + ϵ_i we only need a joint distribution on {i} ∪ N(i)
- ▶ Let G_i denote the subgraph of G which includes vertices $\{i\} \cup N(i)$ and the edges among them
- The subgraph T_i of G_i which only contains the edges $\{i \sim j \mid j \in N(i)\}$ is an embedded spanning tree of G_i
- Use the local embedded spanning trees T_i to specify the b_{ij} 's and τ_i

Directed acyclic graph autoregressive (DAGAR) model

- AR_i denotes the AR(1) distribution on T_i
- Solve for b_{ij} and τ_i such that $E_{AR_i}(w_i | w_{N(i)}) = \sum_{j \in N(i)} b_{ij} w_j$ and $\tau_i = 1/Var_{AR_i}(w_i | w_{N(i)})$
- ► No edge is left out !

Figure: Decomposing a graph into a sequence of embedded spanning trees

•
$$b_{ij} = b_i = \rho/(1 + (|N(i)| - 1)\rho^2)$$

•
$$\tau_i = (1 + (|N(i)| - 1)\rho^2)/(1 - \rho^2)$$

•
$$\det(Q_{DAGAR}) = \prod_{i=1}^k \tau_i$$

- Positive definite for any $0 \le \rho \le 1$
- Interpretability of ρ:
 - If the graph is a tree, then DAGAR model is same as the AR(1) model on the tree i.e. correlation between d^{th} order neighbors is ρ^d for d = 1, 2, ...
 - If the graph is a closed two-dimensional grid, then each neighbor pair correlation is ρ
- ▶ p_{DAGAR}(w) can be stored and evaluated using O(e + k) flops where e is the total number of neighbor pairs

Averaging Cholesky decompositions over orderings

- Priors over the space of all k! orderings/permutations
- Averaging over Cholesky decompositions of precision matrices:

$$Q = \frac{1}{k!} \sum_{\pi} P_{\pi} L_{\pi} D_{\pi} L_{\pi}^{\mathrm{T}} P_{\pi}^{\mathrm{T}}$$

The above produces closed-form expressions for Autoregressive models:

$$\begin{aligned} Q_{ii} &= 1 + \frac{n_i \rho^2}{2(1-\rho^2)} + \frac{\rho^2}{(1-\rho^2)} \sum_{j \sim i} f(\rho, n_j) \\ Q_{ij} &= \frac{\rho}{1-\rho^2} I(i \sim j) + \frac{\rho^2}{1-\rho^2} \sum_{k \in N(i) \cap N(j)} g(\rho, n_k) \;. \end{aligned}$$

New class of DAGAR models for areal/lattice data (Datta et al., 2017)

Figure: Average neighbor pair correlations as a function of ρ for proper CAR and DAGAR models

Simulated data analysis

Figure: Mean square error as a function of ρ and $r=\tau^2/\sigma^{\rm 2\!\! c}$ for DAGAR and CAR models

Sudipto Banerjee (UCLA)

Slovenia stomach cancer data

Figure: Slovenia stomach cancer data

- ► Observed (O_i) and expected (E_i) number of cancer counts for each of the 194 municipalities of the country
- $O_i \sim Poisson(E_i \exp(\alpha + \beta SE_i + w_i))$ where $w \sim N(0, \tau_w Q(\rho))$

Table: Parameter estimates with confidence intervals and model comparison metrics

	α	β	ρ	DIC	LPPDLOOCV ¹
CAR	0.09 (0.02, 0.16)	-0.12 (-0.19, -0.04)	0.33 (0.02, 0.86)	1097	1170
DAGAR	0.11 (0.03, 0.18)	-0.12 (-0.19, -0.06)	0.08 (0.004, 0.24)	1091	1127
$DAGAR_{OF}$	0.11 (0.05, 0.17)	-0.12 (-0.18, -0.06)	0.06 (0.003, 0.2)	1090	1133

- ► Zadnik and Reich (2006) observed spatial confounding with ICAR model ($\hat{\beta}_{ICAR} = -0.02(-0.10, 0.06)$)
- Here for all three models the CIs for β lie outside zero
- Estimates of ρ are much smaller than 1
- ► Estimates of β here are closer to those obtained in the non-spatial (NS) analysis ($\hat{\beta}_{NS} = -1.4(-0.17, -0.10)$)

¹Log-predictive posterior density using Leave one out cross validation

Summary

- DAGAR models for areal data constructed from sparse Cholesky factors
- Scalability for large areal data
- Ordered vs order-free DAGAR
 - For all analysis, ordered model performed very similar to the order-free model
 - Ordered model is faster with theoretical results about interpretability of ρ
- DAGAR models are positive definite and can be directly used to model or simulate any multivariate data on graphs (like imaging or social network data)
- Better performance than CAR modes for many scenarios
- DAGAR available at https://arxiv.org/pdf/1704.07848.pdf

Thank You!